5,126 research outputs found

    Space disposal of nuclear wastes. Volume 1: Socio-political aspects

    Get PDF
    The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined

    Approximation Algorithms for Generalized MST and TSP in Grid Clusters

    Full text link
    We consider a special case of the generalized minimum spanning tree problem (GMST) and the generalized travelling salesman problem (GTSP) where we are given a set of points inside the integer grid (in Euclidean plane) where each grid cell is 1×11 \times 1. In the MST version of the problem, the goal is to find a minimum tree that contains exactly one point from each non-empty grid cell (cluster). Similarly, in the TSP version of the problem, the goal is to find a minimum weight cycle containing one point from each non-empty grid cell. We give a (1+42+ϵ)(1+4\sqrt{2}+\epsilon) and (1.5+82+ϵ)(1.5+8\sqrt{2}+\epsilon)-approximation algorithm for these two problems in the described setting, respectively. Our motivation is based on the problem posed in [7] for a constant approximation algorithm. The authors designed a PTAS for the more special case of the GMST where non-empty cells are connected end dense enough. However, their algorithm heavily relies on this connectivity restriction and is unpractical. Our results develop the topic further

    A robust enhancement to the Clarke-Wright savings algorithm

    Get PDF
    We address the Clarke and Wright (CW) savings algorithm proposed for the Capacitated Vehicle Routing Problem (CVRP). We first consider a recent enhancement which uses the put first larger items idea originally proposed for the bin packing problem and show that the conflicting idea of putting smaller items first has a comparable performance. Next, we propose a robust enhancement to the CW savings formulation. The proposed formulation is normalized to efficiently solve different problems, independent from the measurement units and parameter intervals. To test the performance of the proposed savings function, we conduct an extensive computational study on a large set of well-known instances from the literature. Our results show that the proposed savings function provides shorter distances in the majority of the instances and the average performance is significantly better than previously presented enhancements

    Interactions of technology and society: Impacts of improved airtransport. A study of airports at the grass roots

    Get PDF
    The feasibility of applying a particular conception of technology and social change to specific examples of technological development was investigated. The social and economic effects of improved airport capabilities on rural communities were examined. Factors which led to the successful implementation of a plan to construct sixty small airports in Ohio are explored and implications derived for forming public policies, evaluating air transportation development, and assessing technology

    They watch and wonder. Public attitudes toward advanced technology

    Get PDF
    The relationship of technological development to individual and community response was investigated to provide a general conceptual, as well as empirical basis, for an understanding of the impact of advanced technologies on social life. Results of the surveys are presented in tables and graphs

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    Double-peaked Lyman α emission at z = 6.803: a reionization-era galaxy self-ionizing its local H II bubble

    Get PDF
    We report the discovery of a double-peaked Lyman α profile in a galaxy at z = 6.803, A370p_z1, in the parallel Frontier Field of Abell 370. The velocity separation between the blue and red peaks of the Lyman α profile (⁠Δ v = 101^{+38}_{-19}(±48)km s^{-1}) suggests an extremely high escape fraction of ionizing photons >59(51) per cent (2σ). The spectral energy distribution indicates a young (50 Myr), star-forming (⁠12 ± 6M_{⊙}yr^{-1}) galaxy with an IRAC excess implying strong [O III] + H β emission. On the basis of the high escape fraction measured, we demonstrate that A370p_z1 was solely capable of creating an ionized bubble sufficiently large to account for the blue component of its Lyman α profile. We discuss whether A370p_z1 may be representative of a larger population of luminous z ≃ 7 double-peaked Lyman α emitting sources with high escape fractions that self-ionized their surroundings without contributions from associated ultraviolet-fainter sources

    The phase spiral in Gaia DR3

    Full text link
    We aim to study the phase spiral in the Milky Way (MW) with Gaia DR3. We used an edge detection algorithm to find the border of the phase spiral, allowing us to robustly quantify its shape at different positions and for different selections. We calculated the time of onset of the phase-mixing by determining the different turns of the phase spiral and using the vertical frequencies from commonly used MW potential models. We find that the phase spiral extends down to 1.2-1.2 kpc in height below the plane (about 3 to 5 scale heights of the thin disc) and beyond ±50\pm 50 km/s in VZV_Z. We see a secondary branch mostly at positive vertical velocities when coloured by azimuthal velocity and in the counts projection. We also find complex variations of the phase spirals with angular momentum and azimuth. All these possibly provide evidence of multiple perturbations (from different times or from different perturbers) and/or of the complexity of the phase mixing process. We detect the phase spiral from 6 to 11 kpc from the Galactic centre and find signatures of vertical asymmetries 1-2 kpc beyond this range. We measure small but clear variations with azimuth. When we determine the phase mixing times from the phase spiral at different angular momenta and using the different spiral turns (at different ZZ) we obtain inconsistent times with systematic differences (times increasing with LZ|L_Z| and with Z|Z|). Our determinations are mostly in the range of [0.3-0.9] Gyr, with an average of 0.5 Gyr. The inconsistencies do not change when using different usual potential models, different stellar distances or frequencies for different kinetic temperatures. They could stem from the inconsistency of potential models with the true MW, and from too simple modelling, in particular neglecting self-gravity, not considering the multiple perturbations and the interference with other processes.Comment: accepted for publication in A&

    EAGLE multi-object AO concept study for the E-ELT

    Full text link
    EAGLE is the multi-object, spatially-resolved, near-IR spectrograph instrument concept for the E-ELT, relying on a distributed Adaptive Optics, so-called Multi Object Adaptive Optics. This paper presents the results of a phase A study. Using 84x84 actuator deformable mirrors, the performed analysis demonstrates that 6 laser guide stars and up to 5 natural guide stars of magnitude R<17, picked-up in a 7.3' diameter patrol field of view, allow us to obtain an overall performance in terms of Ensquared Energy of 35% in a 75x75 mas^2 spaxel at H band, whatever the target direction in the centred 5' science field for median seeing conditions. The computed sky coverage at galactic latitudes |b|~60 is close to 90%.Comment: 6 pages, to appear in the proceedings of the AO4ELT conference, held in Paris, 22-26 June 200

    SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) will be the world's first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers in the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to allow for a wide field of view with a light-weight camera, e.g. using GAPDs or multi-anode photomultipliers. One objective of the GATE (Gamma-ray Telescope Elements) programme is to build one of the first Schwarzschild-Couder prototypes and to evaluate its performance. The construction of the SST-GATE prototype on the campus of the Paris Observatory in Meudon is under way. We report on the current status of the project and provide details of the opto-mechanical design of the prototype, the development of its control software, and simulations of its expected performance.Comment: In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223
    corecore